If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+24y=37
We move all terms to the left:
4y^2+24y-(37)=0
a = 4; b = 24; c = -37;
Δ = b2-4ac
Δ = 242-4·4·(-37)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{73}}{2*4}=\frac{-24-4\sqrt{73}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{73}}{2*4}=\frac{-24+4\sqrt{73}}{8} $
| 4(x-8)=22 | | (v+6)^2)+4=79 | | 7.2x-3(x-19,5)=-4+6.5x-3.7x | | 0.4j+4.42=-1.1j-17.18 | | 0.8x=4.4 | | ½j+4=-15 | | -16.44+10f=15.7f+13 | | -8-8r=4-2r | | 4n+12÷6=8 | | 18x-45=-3 | | 2x+4x+6-3x=12 | | -17y=-357 | | 9y+18+7y=-10+9y | | (10x+7)+(5x+3)=145 | | X+(x-65)=180 | | 3x+2=125 | | 2h−3=1h= | | 17+11k=17+14k | | 8p+4-p=-24 | | 7x-9=19-7x | | 1-8k+5k=-3-4k | | 2x+3x+170=360 | | 6x+2=6x+2=9x-49x−4 | | -12x+4+3x=22 | | -25=⅕h+5 | | 11-3h=-2h | | 13/4-y=13/8 | | -12.8w+9.42=-13.4w | | 3^2x3^3=3^x | | 14v+4=15v | | 20w-17w-w=20 | | 5n+65=n+27 |